11) Which of the following combinations of constraints has no feasible region? A) X + Y ≥ 15 and X – Y ≤ 10 B) X + Y ≥ 5 and X ≥ 10 C) X ≥ 10 and Y ≥ 20 D) X + Y ≥ 100 and X + Y ≤ 50 E) X ≤ -5 12) The corner-point solution method requires: A) identifying the corner of the feasible region that has the sharpest angle. B) moving the iso-profit line to the highest level that still touches some part of the feasible region. C) moving the iso-profit line to the lowest level that still touches some part of the feasible region. D) finding the coordinates at each corner of the feasible solution space. E) none of the above 13) Which of the following sets of constraints results in an unbounded maximization problem? A) X + Y ≥ 100 and X + Y ≤ 50 B) X + Y ≥ 15 and X – Y ≤ 10 C) X + Y ≤ 10 and X ≥ 5 D) X ≤ 10 and Y ≤ 20 E) All of the above have a bounded maximum. 14) What is the region that satisfies all of the constraints in linear programming called? A) area of optimal solutions B) area of feasible solutions C) profit maximization space D) region of optimality E) region of non-negativity 15) Using the iso-profit line solution method to solve a maximization problem requires that we: A) find the value of the objective function at the origin. B) move the iso-profit line away from the origin until it barely touches some part of the feasible region. C) move the iso-cost line to the lowest level that still touches some part of the feasible region. D) test the objective function value of every corner point in the feasible region. E) none of the above 16) For the constraints given below, which point is in the feasible region of this maximization problem? (1) 14x + 6y ≤ 42    (2) x – y ≤ 3    (3) x, y ≥ 0 A) x = 2, y = 1 B) x = 1, y = 5 C) x = -1, y = 1 D) x = 4, y = 4 E) x = 2, y = 8 17) For the following constraints, which point is in the feasible region of this minimization problem? (1) 14x + 6y > 42    (2) x – y > 3 A) x = -1, y = 1 B) x = 0, y = 4 C) x = 2, y = 1 D) x = 5, y = 1 E) x = 2, y = 0 18) What combination of x and y will yield the optimum for this problem? Maximize $3x + $15y, subject to (1) 2x + 4y ≤ 12 and (2) 5x + 2y ≤ 10 and (3) x, y ≥ 0. A) x = 2, y = 0 B) x = 0, y = 3 C) x = 0, y = 0 D) x = 1, y = 5 E) x = 0, y = 5 19) What combination of x and y will yield the optimum for this problem? Minimize $3x + $15y, subject to (1) 2x + 4y ≤ 12 and (2) 5x + 2y ≤ 10 and (3) x, y ≥ 0. A) x = 2, y = 0 B) x = 0, y = 3 C) x = 0, y = 0 D) x = 1, y = 5 E) x = 0, y = 5 20) What combination of a and b will yield the optimum for this problem? Maximize $6a + $15b, subject to (1) 4a + 2b ≤ 12 and (2) 5a + 2b ≤ 20 and (3) x, y ≥ 0. A) a = 0, b = 0 B) a = 3, b = 3 C) a = 0, b = 6 D) a = 6, b = 0 E) a = 0, b = 10